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Abstract Pseudomonas is a genus of non-fermentative
gram-negative Gammaproteobacteria found both on land
and in the water. Many terrestrial isolates of this genus
have been studied extensively. While many produce bioac-
tive substances, enzymes, and biosurfactants, other Pseudo-
monas isolates are used for biological control of plant
diseases and bioremediation. In contrast, only a few marine
isolates of this genus have been described that produce
novel bioactive substances. The chemical structures of the
bioactive substances from marine Pseudomonas are
diverse, including pyroles, pseudopeptide pyrrolidinedione,
phloroglucinol, phenazine, benzaldehyde, quinoline, quino-
lone, phenanthren, phthalate, andrimid, moiramides, zafrin
and bushrin. Some of these bioactive compounds are anti-
microbial agents, and dibutyl phthalate and di-(2-ethyl-
hexyl) phthalate have been reported to be cathepsin B
inhibitors. In addition to being heterogeneous in terms of
their structures, the antibacterial substances produced by
Pseudomonas also have diverse mechanisms of action:
some aVect the bacterial cell membrane, causing bacterial
cell lysis, whereas others act as acetyl-CoA carboxylase
and nitrous oxide synthesis inhibitors. Marine Pseudomo-
nas spp. have been isolated from a wide range of marine
environments and are a potential untapped source for medi-
cally relevant bioactive substances.
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Introduction

Pseudomonas is a genus of non-fermentative gram-nega-
tive Proteobacteria that have been isolated from soil and
fresh and salt water. This genus consists of species that
are diverse genetically [5, 41, 50]. Based on their rRNA–
DNA similarity, members of the genus Pseudomonas
have been divided into Wve groups. Group I includes the
� subclass of the Proteobacteria, i.e., the genus Pseudo-
monas (sensu stricto) [53]. The species in the other four
groups have been classiWed according to the new taxon-
omy [41]. Anzai et al. [5] subdivided Pseudomonas
(sensu stricto) into two clusters based on an analysis of
their 16S rDNA sequences. The Wrst cluster has six
groups: P. syringae (12 species), P. chlororaphis (5 spe-
cies), P. Xuorescens (18 species), P. putida (six species),
P. aeruginosa (11 species), and P. stutzeri (3 species).
The second cluster has only one group, the P. pertucino-
gena group (two species).

As many as 3,800 biologically active microbial metabo-
lites have been isolated from bacteria. Pseudomonas pro-
duces 795 bioactive substances, including 610 antibiotics
and 185 substances with bioactive properties other than
antibiotic activity [18]. More bioactive substances have
been isolated from terrestrial Pseudomonas than from
marine Pseudomonas, and there are a vast number of terres-
trial Pseudomonas species that are well known as producers
of bioactive substances. Some of these play very important
roles in the biological control of pathogenic plant bacteria
and fungi and in bioremediation. In contrast, there are many
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fewer isolates of marine Pseudomonas, and their bioactive
substances are not as well studied.

Some reports indicate that there are marine and terres-
trial Pseudomonas isolates that produce the same secondary
metabolites, but novel secondary metabolites from marine
isolates of this genus also have been described. The marine
habitat has enormous ecological diversity, making it likely
that marine Pseudomonas sp. represent an untapped reser-
voir of novel bioactive substances. This review provides a
comprehensive picture of what is currently known about
bioactive substances produced by marine isolates of
Pseudomonas, their biological activities and modes of
action, the ecological diversity of marine Pseudomonas,
and the phylogenetic relationship among marine Pseudo-
monas isolates.

Bioactivities of Pseudomonas metabolites

Antimicrobial, antiviral, and cytotoxic agents

The Wrst marine isolate of Pseudomonas known to produce a
bioactive substance was isolated from Thalassia (turtle
grass) near La Parguera, Puerto Rico [17]. The bacterium,
P. bromoutilis, produces a pyrrole antibiotic, 2,3,4-tribromo-
5(1�hydroxy,2�,4�-dibromophenyl) pyrrole. This pyrrole
antibiotic inhibits gram-positive bacteria such as Staphylo-
coccus aureus, Diplococcus pneumoniae, and Streptococcus
pyogenes at concentrations of 0.0063 �g/ml, and inhibits
Mycobacterium tuberculosis at 0.2 �g/ml. It is inactive
against gram-negative bacteria and the fungus Candida albi-
cans. This substance was not toxic in mice at 25 or 250 mg/kg
by intravenous and subcutaneous injection, respectively.
However, subcutaneous injection of 200 mg/kg of this
pyrrole antibiotic did not protect mice infected with
S. aureus. This was the Wrst eVort to explore the bioactivity
of a substance from a marine isolate of Pseudomonas.

Wratten et al. [78] isolated the antibiotic-producing
Pseudomonas sp. 102-3 from a seawater sample from a La
Jolla, California tide pool. The bacterium inhibits the growth
of Vibrio anguillarum, V. harveyi, S. aureus, and C. albicans,
and produces three antibacterial compounds: 4-hydroxy-
benzaldehyde, 2-n-heptyl-4-quinolinol, and 2-n-pentyl-4-
quinolinol (Fig. 1). 4-hydroxybenzaldehyde exhibits low
antimicrobial activity, inhibiting C. albicans, S. aureus, and
V. harveyi at 5 mg/disk, but not at 50 �g/disk. The other two
compounds, 2-n-heptyl-4-quinolinol and 2-n-pentyl-4-quin-
olinol, both show antimicrobial activity against S. aureus,
V. harveyi, and V. anguillarum at 50 �g/disk. As 2-n-heptyl-
4-quinolinol is a known antibiotic that has been isolated
from terrestrial P. aeruginosa, Wratten et al. [78] suggested
that Pseudomonas sp. 102-3 may thus have the same biosyn-
thetic capabilities as P. aeruginosa.

The marine isolates P. Xuorescens, isolated from the sur-
face of tunicates, have been reported to produce three
unique substances, moiramides A, B, and C, along with a
known compound, andrimid (Fig. 1); the latter is a member
of a newer class of antibiotics, the pseudopeptide pyrrolid-
inedione antibiotics [51]. In contrast to moiramides A and
C, moiramide B and andrimid both have antibacterial activ-
ity. This suggests that the intact succinimide moiety is
required for their activity. Moiramide B and andrimid have
broad-spectrum antibacterial activity because of their inhi-
bition of bacterial acetyl-CoA carboxylase [26]. Moiramide
B is the Wrst potent antibacterial compound from marine
bacteria with acetyl-CoA carboxylase inhibiting activity as
its mode of action. Freiberg et al. [27] evaluated the in vivo
eYcacy of moiramide B and some of its synthetic deriva-
tives using a S. aureus sepsis model in mice. These pyrro-
lidinedione derivatives exhibit antibacterial activity with
minimum inhibitory concentrations (MICs) of 0.01–8,
0.25–32, and 16–64 �g/ml against S. aureus 133, S. pneu-
moniae G9A, and Escherichia coli Neumann, respectively.
When evaluated in a murine model of S. aureus sepsis, two
of the moiramide B derivatives also showed in vivo activity
comparable to linezolid, an antibiotic that is used currently.
These reports indicate that antibiotics produced by marine
isolates of P. Xuorescence may be potential lead com-
pounds in the search for new classes of antibiotics to treat
bacterial infections.

Pseudomonas sp. 1531-E7 isolated from a sponge,
Homophymia sp., produces quinolones (2-undecyl-4-quino-
lone, 2-undecen-18-yl-4-quinolone, 2-nonyl-4-quinolone,
and 2-nonyl-4-hydroxyquinoline N-oxide) (Fig. 1) [16].
Anti-Plasmodium falsifarum activity is exhibited by
2-undecyl-4-quinolone, 2-undecen-18-yl-4-quinolone, and
2-nonyl-4-quinolone. Cytotoxicity to KB cells is noticed
for 2-undecen-18-yl-4-quinolone and 2-nonyl-4-hydrox-
yquinoline N-oxide. In addition, 2-undecyl-4-quinolone
and 2-nonyl-4-hydroxyquinoline N-oxide are active against
HIV-1 and S. aureus.

Isnansetyo et al. [35] puriWed the antibiotic 2,4-diac-
etylphloroglucinol (DAPG) from the culture supernatant of
Pseudomonas sp. AMSN, which was isolated from a
marine alga. The antibiotic exhibits potent activity against
ten clinical isolates of methicillin-resistant S. aureus
(MRSA), with an MIC range of 0.25–1 �g/ml, and has bac-
tericidal activity against MRSA at 4 �g/ml, comparable to
vancomycin. This antibiotic causes lysis of MRSA and
V. parahaemolyticus at 1 and 24 �g/ml, respectively [38].
DAPG was also active against 23 vancomycin-resistant
S. aureus (VRSA) strains isolated in Asia, Europe, Brazil,
South Africa, and the USA, and against vancomycin-resis-
tant Enterococcus spp. (VRE) genotypes A and B [34].
DAPG is active against a wide range of VRSA isolates as
well as against a vancomycin-heteroresistant S. aureus
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Fig. 1 The chemical structures 
of secondary metabolites 
produced by marine isolates 
of Pseudomonas. Please see 
the text for references

O

OH

N

OH

N

OH

4-hydroxybenzaldehyde 2-heptylquinolin-4-ol 2-pentylquinolin-4-ol

OH

OH O

O O

H O

O

O

O

O

O

O

O

diacetyl phloroglucinol dibutyl phthalate di-(2-ethylhexyl)phthalate

NH

O

NH

O

O O

NH

O

H
NH

O

OH

O

Andrimid     Moiramide A

Moiramide B     Moiramide C

Bushrin   Zafrin

NH

O

NH

O

O O

NH

O

OHNH

O

NH

O

O O

NH

O

O
O N

OH

phenazine alkaloids

N

R

(1) R=-CO2H

(2) R=-CONH2

N
H

O

(CH2)10
_
CH3 N

H

O

(CH2)8
_

CH3

2-undecyl-4-quinolone 2-undecen-1 -yl-4-quinolone

(CH2 –C 3

OH

O
N H)8N

H

O

(CH2)8
_

CH3

2-nonyl-4-quinolone 2-nonyl-4-hydroxyquinoline N-oxide 
123



1242 J Ind Microbiol Biotechnol (2009) 36:1239–1248
(h-VRSA) at MIC 4 �g/ml. This substance also has moder-
ate activity against both VRE-A and -B at MIC 8 �g/ml, but
is inactive against VRE-C at up to 16 �g/ml. DAPG is a
well-known antibiotic that is also produced by terrestrial
P. Xuorescens [52, 66, 79]; this suggests that AMSN has
the same antibiotic biosynthesis capabilities as P. Xuorescens.

P. aeruginosa isolated from an antarctic sponge, Isodic-
tya setifera, produces six diketopiperazines and two phena-
zine alkaloids (Fig. 1) [37]. Phenazines are pigments with
antibiotic properties. These two phenazine alkaloids are
active against gram-positive bacteria, Bacillus cereus,
Micrococcus luteus, and S. aureus, but diketopiperazines
do not exhibit antibiotic and cytotoxic properties. P. aeru-
ginosa, isolated from a mangrove environment, also
produces phenazines [63]. The authors identiWed these pig-
ments as pyocyanin and pyorubrin. These compounds
exhibit antibacterial activity against Citrobacter sp. as well
as hemolytic activity in a chick blood assay. Phenazine is
commonly produced by terrestrial Xuorescent Pseudomo-
nas isolates [46], including terrestrial P. aeruginosa. These
Wndings further support the idea that some marine Pseudo-
monas isolates have the same biosynthetic capabilities as
their terrestrial counterparts.

A sulfated polysaccharide produced by Pseudomonas sp.
WAK-1 isolated from the brown seaweed Undaria pinnati-
Wda is active against herpes simplex virus 1 (HSV-1)
(EC50 = 1.4 �g/ml) [47]. The polysaccharide has a repeat-
ing unit: -2)-b-d-Galp(4SO4)(1-4)[b-d-Glcp(1-6)]-b-d-
Galp(3SO4)(1- [48]. Furthermore, anti-cancer activity of
this substance is also determined by the panel of 39 cell
lines with 63.2 �g/ml of average IC50. Apoptosis is respon-
sible for its anti-cancer activity.

Of the marine isolates of Pseudomonas, P. stutzeri have
been described in the greatest detail. However, few studies
have focused on bioactive substances produced by P. stut-
zeri. Uzair et al. [77] reported that the marine Pseudomonas
sp. CMG1030 has antimicrobial activity. This organism
was originally identiWed as P. aeruginosa, but the strain
identiWcation was revised to P. stutzeri CMG1030, which
produces the novel antibacterial compound zafrin [76].
Subsequently, the authors elucidated the chemical structure
of zafrin and studied its antibacterial mechanism. Zafrin,
[4b-methyl-5,6,7,8 tetrahydro-1 (4b-H)-phenanthrenone]
(Fig. 1) is active against the human pathogenic bacteria,
S. aureus and S. typhi, but is inactive against C. albicans
and Schizosaccharomyces pombe. The MICs for gram-
positive and gram-negative bacteria range from 50 to 75
and 75 to 125 �g/ml, respectively. Further study of the
mechanism of zafrin revealed that the substance exerts its
bactericidal eVects by bacterial cell lysis.

Another novel antibiotic, bushrin (7-(3-furyl)-3,7-dime-
thyl-7,8-dihydro-1-naphthalenol), is also produced by
P. stutzeri CMG1030 [1]. This antibiotic is active against

V. harveyi, E. coli, Salmonella typhi, Proteus mirabilis,
P. morgani, Shewanella putrifaciens, Hafnia alvei, Seratia
marcescens, B. subtillis, B. steriothermophilus, B. cereus,
Clostridium perfringens, C. sporogenes, S. aureus (MSSA
and MRSA), S. epidermidis, E. faecalis, and E. faecium
with MIC ranging from 50 to 125 �g/ml. However, this
antibiotic is inactive against C. albicans, Klebsiella
aerogenes, and Streptococcus group G. Bacterial cell lysis
activity is responsible for the antibacterial activity of this
substance.

There are several marine Pseudomonas sp. with antimi-
crobial activity that is due to substances that have not yet
been isolated or characterized. For example, marine
Pseudomonas strain I-2, isolated from estuary water, has
anti-Vibrio activity [20]. The antibacterial activity was
evaluated against the following shrimp pathogenic vibrios:
V. harveyi, V. Xuvialis, V. parahaemolyticus, V. damsela,
and V. vulniWcus. The active substance is a non-proteina-
ceous substance that is soluble in chloroform. The chloro-
form extract from the bacterium is active against V. harveyi
at 20 �g/ml, but there is no toxic eVect on shrimp larvae up
to 50 �g/ml. This suggests that the substance can be used to
control pathogenic marine Vibrio. As Pseudomonas sp. I-2
is non-pathogenic to shrimp larvae, the bacterium may be
used as a biocontrol agent against vibriosis in marine aqua-
culture.

The extract of Pseudomonas sp. PB2 associated with a
sponge, Suberites domuncula, exhibits anti-angiogenic,
hemolytic, antimicrobial, and cytotoxic activities [71]. Its
anti-angiogenic activity in the chick chorio-allantoic mem-
brane (CAM) assay is 50% at 5 �g/ml and 100% at 10 �g/ml.
Furthermore, the extract is also cytotoxic to PC12 and
HeLa cells. Antimicrobial activity of the extract is notice-
able against S. aureus, S. epidermidis, S. lentus, E. coli, and
Candida albicans.

Kim et al. [43] reported P. Xuorescens HAK-13, which
has algal-lytic activity against Heterosigma akashiwo
(Raphidophyceae), Alexandrium tamarense, and Cochlodi-
nium polykrikoides, but is inactive against Gymnodinium
catenatum. The substance responsible for the activity is a
proteinaceous compound that localizes to the cytoplasmic
membrane of the bacterium. P. Xuorescens HAK-13 thus
has potential for selectively controlling harmful algal
blooms in the marine environment.

Radjasa et al. [55] isolated Pseudomonas sp. associated
with the soft coral Sinularia polydactyla. This bacterium
has antibacterial activity against Streptococcus equi subsp.
zooepidemics. Although the nonribosomal peptide synthe-
tase (NRPS) gene from this bacterium can be ampliWed, the
substance responsible for the antibacterial activity remains
unknown. The authors have not determined the relationship
between the NRPS gene and the antibacterial activity of the
Pseudomonas sp.
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Cathepsin B inhibitors

Hoang et al. [32] isolated two cathepsin B inhibitors from
the culture supernatant of marine Pseudomonas sp. PB01.
The inhibitors were identiWed as dibutyl phthalate and di-
(2-ethylhexyl) phthalate, which exhibit dose-dependent
cathepsin B with IC50s of 0.42 and 0.38 mM, respectively.
The substances inactivate the pericellular cathepsin B of
murine melanoma cells. Cathepsin B (EC3.4.22.1), which
belongs to the papain superfamily, is a cysteine proteinase
with a cysteine residue in its active site. This enzyme pro-
motes the growth, invasion, and metastasis of cancer cells
by catalyzing the degradation of the interstitial matrix and
basement membranes; this allows cancer cells to invade
locally and to metastasize [24, 68]. Cathepsin B also plays
an important role in a variety of pathologies, including
inXammation, pancreatitis, osteoarthritis, tumor angiogene-
sis, apoptosis, and neuronal diseases [6, 15, 19, 29, 31, 33,
49, 74]. In addition, this enzyme markedly enhances infec-
tion by the Ebola virus by converting the 130-kDa viral gly-
coprotein GP1 to a 19-kDa species [65]. Because of the role
of cathepsin B in disease development, including cancer
cell proliferation and virus infection, studies of cathepsin B
inhibitors from marine isolates of Pseudomonas should be
intensiWed.

Diversity of marine Pseudomonas

Ecological diversity of marine Pseudomonas

Marine isolates of Pseudomonas are found in diverse eco-
systems, including coastal regions, the deep sea, and more
extreme environments. Marine Pseudomonas also can be
found as bacterioplankton in seawater, in association with
other marine organisms, and in sea sediment. The produc-
tion of marine secondary metabolites can be viewed in an
ecological context [25]. Thus, the diversity of Pseudomo-
nas isolated from a wide range of marine ecosystems sug-
gests that these organisms may produce novel and diverse
bioactive substances.

P. Xuorescence is usually found as bacterioplankton in
seawater [22, 54], but Borges et al. [10] isolated the bacte-
rium with denitrifying activity from a bioWlter installed at a
marine recirculation aquaculture system. Marine Pseudo-
monas bacterioplankton have great biodiversity as revealed
by Hagström et al. [30] when they isolated several bacterial
strains closely related to P. slutzeri, P. putida, P. megulae,
P. anguilliseptica, P. gessardi, P. azotoformans, and
P. veronii from the Baltic and Weddell Seas. Danovaro
et al. [23] used automated ribosomal intergenic spacer anal-
ysis (ARISA) to determine bacterial diversity in the aquatic
environment. SpeciWcally, seven Pseudomonas spp. strains

were isolated from Wve diVerent environmental samples.
Analysis of 16S rDNA indicated that isolate 1 was closely
related to P. veronii and P. marginalis, with 98% sequence
similarity. Isolates 2 and 3 were closely related to P. auran-
tiaca (97%). Isolate 5 was close to P. chloritidismutans
(99%) and P. stutzeri (99%). Two other isolates, strains 6
and 7, were closely related to P. aeruginosa (99%). Nota-
bly, isolate 4 was not closely related to any speciWc species
of Pseudomonas, but relatively close to Pseudomonas sp.
strain MFY152 (98%).

In the marine ecosystem, Pseudomonas also associates
with other micro- and macroorganisms. Alavi et al. [2] ana-
lyzed the bacterial community associated with PWesteria-
like dinoXagellate cultures and identiWed two 16S rDNA
clones closely related to P. hibiscicola and P. oleovorans
with 99% sequence similarities. Thakur et al. [72] isolated
two marine antibacterial-producing Pseudomonas sp.
(strains PB1 and PB2) from a Suberites domuncula sponge
primmorph; the n-butanol extract of these Pseudomonas
strains has both antibacterial activity and autoinhibitory
activity. Berg et al. [9] isolated Pseudomonas sp. 13BT
from an axenic culture of Aureococcus anophageVerens
(Pelagophyceae), a eukaryotic picoplankton. This isolate is
closely related to P. luteola (formerly Chryseomonas lute-
ola), with 99% 16S rDNA sequence similarity. This bacte-
rium is able to hydrolyze urea and acetamide, but its
capability is very limited for aminopeptides and citobiose.
Anand et al. [4] screened for antibiotic-producing marine
bacteria associated with sponges from the waters oV the
coast of southeast India and isolated a bacterium, strain
SC11, which is closely related to Pseudomonas based on
the 16S rDNA sequences.

Diverse Pseudomonas spp. are also found in association
with corals. Brück et al. [14] isolated bacterial strains from
Azooxanthellate deep-water octocorals Leptogorgia mini-
mata, Iciligorgia schrammi, and Swiftia exertia, which
grow at moderate depth (40–100 m). Based on 16S rDNA
sequence analysis, the isolates are thought to be related to
P. citronellolis (for strain LM1305), P. oryzihabitans (for
strain LM1405), P. putida (for strain LM1505), P. aerugin-
osa (for strains LM1605, LM2705, DQ517271, and
SE1005), P. pachastrellae (for strain LM2805), and P.
pseudoalcaligenes (for strain LM2905). The other isolates,
IS1005, LM1605, LM3005, LM3105, LM3205, and
LM3305, are not related to any speciWc species of Pseudo-
monas, but can be included in this genus.

Marine Pseudomonas has been found to be a member
of the microorganism community in marine extreme envi-
ronments. Barotolerant marine Pseudomonas sp. BT1 was
isolated in deep water (4,418 m) in a Japanese ocean
trench [39]. This bacterium was closely related to
P. stutzeri, based on the 98% sequence similarity of the 16S
rDNA sequences. Zeng et al. [81] isolated a deep-sea
123
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psychrophilic bacterium identiWed as Pseudomonas sp.
DY-A that produces a cold-active serine alkaline protease.
Radjasa et al. [56] failed to isolate any Pseudomonas
strains from deep-sea (1,000-9,671 m) samples in the
Northwestern PaciWc Ocean. Although two bacterial strains
that are closest to P. beijirinckii based on 16S rDNA
sequence analysis were recovered from surface samples at
the same location, these strains are distantly related to and
likely distinct from the genus Pseudomonas due to the low
16S rDNA similarity (93.6%).

P. stutzeri has diverse ecological origins in both terres-
trial and marine ecosystems. This phenotypically and
genetically heterogeneous group is composed of several
genomovars [8, 21, 28, 45]. Marine isolates of P. stutzeri
have been reported in marine sediment in Barcelona, Spain
[11–13, 60, 61], in sea sediment in Dangast, Germany [67],
and in marine sediment at 11,000-m depth in the Mariana
Trench [70]. Marine isolates of P. stutzeri have also been
reported to live in the Black Sea (southwest) at 120-m
depth [69], in a deep-sea hydrothermal vent in the Galapa-
gos Rift [62] and in the Ariake Sea tideland, Japan [40].
Strains of this species can degrade naphthalene [11–13, 60,
61], oxidize thiosulfate [69], and sulfur [62], denitrify [40],
and produce urea [73] and antibiotics [1, 75–77]. Amachi
et al. [3] also have isolated Pseudomonas strain SCT, a
dissimilatory iodate-reducing bacterium closely related to
P. stutzeri. Two strains of marine Pseudomonas closely
related to P. stutzeri have been isolated from the chemo-
cline of a hypersaline deep-sea basin (Urania Basin, Medi-
terranean Sea) [64].

P. aeruginosa is a well-known pathogenic bacterium. It
is generally regarded as a freshwater or terrestrial bacte-
rium, as it is frequently isolated from these environments as
well as from diseased organisms. However, Kimata et al.
[44] showed that this Pseudomonas sp. also lives in a
marine environment. The detection by two outer membrane
lipoprotein genes speciWc to P. aeruginosa, oprI and oprL,
using API 20 NE kit and 16S rDNA sequence analysis,
revealed that P. aeruginosa inhabits Tokyo Bay. Subse-
quent work indicated that this species can be isolated from
open ocean as well [42]. Jamil et al. [36] isolated a bacte-
rium strain CMG607w from sediment of the Karachi coast,
Pakistan. The strain that produces polyhydroxyalkanoate
(PHA) is identiWed to be P. aeruginosa with 98% 16S
rDNA sequence similarity.

In summary, marine Pseudomonas can be isolated
from diverse ecological environments. The unique eco-
logical characteristics of their environment may inXu-
ence the production of secondary metabolites by the
bacteria. However, studies of Pseudomonas isolated
from diverse marine environments, as well as studies of
the bioactive substances produced by these bacteria, are
still rare.

Phylogenetic relationship of marine isolates 
of Pseudomonas

A search of 16S rDNA sequences in the GenBank, DDBJ,
and EMBL databases shows that hundreds of marine iso-
lates of Pseudomonas have been described. However, the
number of reported marine Pseudomonas sp. is relatively
small compared to terrestrial Pseudomonas sp. Within
Pseudomonas (sensu stricto), the marine isolates include
P. stutzeri, formerly P. perfectomarina [7, 61], P. alcalige-
nes, P. pseudoalcaligenes [53], P. Xuorescens [51],
P. alcaliphila [80], P. aeruginosa [44], P. xanthomarina
[59], P. pachastrellae [58], and P. marincola [57].

P. alcaliphila, a facultative psychrophilic alkaliphile,
was isolated from seawater [80]. P. pachastrellae was iso-
lated from a deep-sea sponge specimen from the Philippine
Sea at a water depth of 750 m [58]. Romanenko et al. [59]
also isolated P. xanthomarina from ascidians specimens in
the Sea of Japan and P. marincola from a deep-sea brittle
star in the Fiji Sea [57].

In bacterial taxonomy, the use of 16S rDNA as a
phylogenetic marker has been developed for determining
intergeneric relationships because the gene evolves at an
extremely slow rate. The 16S rDNA sequences of Pseudo-
monas were used by Anzai et al. [5] to evaluate the aYlia-
tion, group, and reclassiWcation of Pseudomonas sp. We
constructed the phylogenetic tree of marine Pseudomonas
sp. based on 16S rDNA sequences retrieved from the
GenBank, DDBJ, and EMBL databases, and it shows that
marine isolates of Pseudomonas can be divided into two
main clusters. The Wrst cluster consists of P. alcaliphila,
P. alcaligenes, P. aeruginosa, P. xanthomarina, and the
group of P. stutzeri. The second cluster consists of
P. marincola, P. pachastrellae, P. Xuorescens, P. fulva,
and P. veronii (Fig. 2). This result largely conWrmed an
earlier report that the phylogenetic tree based on the
sequences of 16S rDNA of species in the genus Pseudo-
monas (sensu stricto) has two main clusters [5]. The phy-
logenetic tree presented here (Fig. 2) includes several
recently reported novel marine Pseudomonas sp.: P. alcal-
iphila [80], P. xanthomarina [59], P. pachastrellae [58],
and P. marincola [57].

Marine isolates of Pseudomonas that produce bioactive
substances are likely to be dominated by members in the
second cluster. However, the relationship between the abil-
ity to produce bioactive substances and position on the phy-
logenetic tree is still unclear, probably because so few
marine Pseudomonas sp. have been studied extensively. In
the second cluster, bacteria reported to produce bioactive
substances include Pseudomonas sp. AMSN [34, 35, 38],
Pseudomonas sp. MP-6 (GenBank/DDBJ/EMBL databases),
P. fulva An10 (GenBank/DDBJ/EMBL databases),
P. Xuorescens PS7 (GenBank/DDBJ/EMBL databases),
123
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Pseudomonas sp. DG01 (GenBank/DDBJ/EMBL dat-
abases), Pseudomonas sp. PB01 [32], P. veronii C9-4zhy
(GenBank/DDBJ/EMBL databases), and Pseudomonas sp.
283 49zx (GenBank/DDBJ/EMBL databases). Two strains
of Pseudomonas in the Wrst cluster, namely P. aeruginosa
CMG 24360 (GenBank/DDBJ/EMBL databases) and
P. aeruginosa PS3 (GenBank/DDBJ/EMBL databases), are
known to produce bioactive substances.

Conclusions

There are few reports of bioactive substance-producing
marine Pseudomonas sp. compared to those describing ter-
restrial species that produce bioactive metabolites. How-
ever, some bioactive substances with novel biological
activities and mechanisms have been extracted from marine
isolates of Pseudomonas, and some of these metabolites
have antimicrobial properties. The genetic and ecological

diversity of Pseudomonas suggest that marine isolates are a
potential source of bioactive metabolites that could form
the basis of new medical therapies.
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